

PHYTOCHEMICAL EVALUATION AND BIOLOGICAL SCREENING OF DENDROBIUM CHRYSANTHEMUM WALL. EX. LINDL.

P. Srinivasa Rao¹, N. Krishna¹, S. Ganapaty^{2*}, K. Sunitha² and S. Mondal²

¹Divis Laboratories Pvt. Ltd, Chippada, Visakhapatnam (A.P.), India. ^{2*}GITAM Institute of Pharmacy, GITAM (Deemed to be University), Rushikonda, Gandhinagar, Visakhapatnam - 530045 (A.P.), India.

Abstract

A large number of populations are suffering due to various reasons from hepatic disorders of unknown origin. The development of anti-hepatotoxic drugs has drawn the attention of scientists in the field of natural product research because synthetic drugs may cause serious side effects. The present work was aimed to study the *in-vivo* hepatoprotective activity of *Dendrobium chrysanthemum* Wall. ex Lindl (Orchidaceae). The leaves of *D*.*chrysanthemum* were used traditionally in rural districts of Andhra Pradesh State. To give a scientific support, the leaf extract was studied on carbon tetrachloride (CCl₄) induced hepatotoxicity on animal model. The elevated levels of SGOT, SGPT, ALP and total bilirubin were prevented by *D*. *chrysanthemum* leaf extract. The present study confirms that the methanolic extract of *D*. *chrysanthemum* has significant hepatoprotective activity against CCl₄ induced hepatotoxicity and further supports the folklore claims. The histological investigations also evidenced activity against hepatotoxicity and the activity may be attributed to the presence of bioactive compounds like flavonoids, alkaloids, triterpenoids, glycosides and steroids.

Key words: Dendrobium chrysanthemum Wall. ex. Lindl., Total Phenolic contents, Total Flavonoid Content, Total Alkaloid Content, Hepatoprotective activity, Histopathology.

Introduction

Since the origin of the herbal medicines, people were impelled to consider the importance of herbs for treating several physiological disorders. It is no wonder, during the past decade there has been an exponential rise in the application of herbal remedies. However, several herbal products are not really standardized in terms of its effectiveness and safety (Shikha *et al.*, 2012). In the absence of reliable liver protective drugs in modern medicine, in India, a number of medical plants and their formulations are used to cure hepatic disorders (Felix *et al.*, 2005).

Dendrobium (family: Orchidaceae) contains approximately 1100 species which are mainly distributed in the subtropical and tropical regions of Asia. Since ancient times, many *Dendrobium* plants have been used as ingredients for nutraceutical beverages and food products. *Dendrobium* plants have been used by traditional Chinese medical practitioners to alleviate

*Author for correspondence : E-mail : ganapatyseru@gmail.com

diabetes, obesity, rheumatoid arthritis, and liver disorders (Raheleh et al., 2017). Among all the species of Dendrobium, D. chrysanthemum is considered to be the most precious (Jessica et al., 2010). Dendrobium is a type of orchid that is generally yellow or pink in color. The plant has a long thin stem that is used for various herbal and medicinal treatments. D. chrysanthemum has been used in traditional Chinese medicine for centuries now. The Chinese believe that the tonic extracted from the Dendrobium plant is 'yin' in nature and can be used to treat ailments ranging from stomach pain, heatstroke, dry mouth and sores in the mouth (Chung et al., 2005). It is considered a safe herb when consumed in the recommended dosages. Too much of D. chrysanthemum in any form can cause convulsions and may even affect the heart and lungs. Research is still being conducted on the interactions of *D. chrysanthemum* with other drugs or medications. Among its many uses, the Chinese use D. chrysanthemum tonic for longevity. It is believed that D. chrysanthemum when mixed with licorice roots and made into a tea transmits healing energy to all parts of the body. It helps moisten and nourish the skin and prevents dryness and flaky skin. When air pollution and smoke dry out the lungs and air passages and increase thirst, D. chrvsanthemum can be consumed for quick relief and to moisten the passageways (Arditti and Ernst, 1993). It is used as an effective tonic for the treatment of tuberculosis, flatulence, night sweats, anorexia, fever, and dyspepsia (Manorama et al., 1984). D. chrysanthemum tonic improves the functioning of the lungs, kidneys, and stomach. It can reduce stomach pain and cramping and reduce vomiting. It is believed that regular consumption of D. chrysanthemum can also treat sexual impotency. Pain in the feet and hands, lumbago, and arthralgia can be treated with D. chrysanthemum extract (Chung et al., 2007). It can boost the immune system and help the body fight infections. It has long since been used to replenish lost fluids from the body and reduce severe thirst. Natives of the Eastern Himalayas use this plant to heal problems with the eyes. Along with their pretty colors and decorative qualities, growing D. chrvsanthemum at home can eradicate pollutants and toxins from the air and create a clean environment. Its blossoms and canes are edible (Nayak et al., 1997). Countries like Thailand and Singapore, deep fry these delicacies and eat them as snacks. In Europe, D. chrysanthemum blossoms are used as edible cake and as garnishes. Pickle is made from the flowers in Nepal (Pillon and Chase, 2007). D. chrysanthemum possesses phenolics and also flavonoids. Phenolic acids and flavonoids possess diverse biological activities including antioxidant and hepatoprotective properties. Recently it has been considered that polyphenolic compounds are great antioxidants and proved to be more effective than vitamin C, E and carotenoids (Girish et al., 2009). In view of the above, the authors have made an attempt to screen the leaf extracts of D. chrysanthemum which is being used by folklore in the north coastal districts of Andhra Pradesh State for treating liver disorders.

Materials and Methods

The whole plant of *D. chrysanthemum* was collected from Araku and surrounding villages of Andhra Pradesh, India and authenticated by Dr. M. Venkayya, Taxonomist, Dept of Botany, Andhra University, Visakhapatnam, India (Voucher specimen No.PS-SG-02), Ascorbic acid (Sigma Aldrich Chemie, Germany), Riboflavin (S.D chemicals, India), Silymarin, Gallic acid, and Catechin (Nature remedies, Bangalore, Karnataka, India). CCl₄ (Poona Chemical Laboratory, Pune, India) and SGOT, SGPT, ALP, total bilirubin estimation kits (Span Diagnostics, Surat, India). All other solvents and chemicals used were of analytical grade purchased from local source.

Preparation of extract

The collected plant material (1kg) of D.

 Table 1: Standardization and qualitative-quantitative analysis

 of whole pant of D. chrysanthemum.

S.	Parameter		Dendrohium					
No.	1 al anicter		chrysanthemum					
1.	Organoleptic characters							
	Colour		Pale greenish white					
	Odour			Characteristic				
	Taste		Characteristic					
	Physical appearan	ce	Fre	e flowing powder				
2.	Physiochemical ch	ivsiochemical characters						
	Water soluble extra	active		72.45%				
	Alcohol soluble ex	tractive		80.00%				
	pH 1% w/v solutio	n		6.14				
	Loss on drying		4.50%					
	Ash content		6.32%					
	Acid insoluble ash	l	0.63%					
	Moisture content b	oy K.F		1.21%				
	Foreign organic ma	atter	3.73%					
3.	Heavy metals							
	Lead		5.00 ppm					
	Arsenic		1 ppm					
	Cadmium		0.2 ppm					
	Mercury		1 ppm					
4.	Microbiological analysis							
	Fotal aerobic count		410 CFU/g					
	Yeast & Mould		30 CFU/g					
5.	Pathogen analysis		1					
	E. Coli			Absent				
	Salmonella		Absent					
	Pseudomonas aer	uginosa		Absent				
	Staphylococcus at	ureus	Absent					
6.	Qualitative prelimi	litative preliminary phytochemical analysis						
	Alkaloids		+					
	Carbohydrates		+					
	Flavonoids		+					
	Glycosides		+					
	Phytosterols	• 1	+					
	Proteins & amino a	acids	-					
	Saponins		-					
	Tannins		-					
7	Ouentitative nhute	ahamiaala	+					
/.	Quantitative phyto Dhanalia	Eleven	naryst	8 Allealaid				
	riteliolic	riavolio	at	Aikalulu				
	$(\alpha G \Delta E/100)$		00	(mg/100 g)				
	(gUAL/100	(gCE/1)	nlant material)				
	<u> </u>	5 2/1+0 C	/)2*	piant material)				
	т.J1⊥0. 4	J.J+±0.3	3 [•] 48.10±0.46*					

(+) Present; (-) Absent *Values are means of triplicate determination ± Standard deviation.

chrysanthemum was subjected to standardization as per WHO guidelines for organoleptic, physiochemical, heavy metal, microbiological analysis (Anonymous, 2007). The plant materials were shade dried, powdered (40 mesh size) to get a coarse powder and then subjected to Soxhlet extraction (4 hrs) using methanol as a solvent. The extract was filtered and concentrated at reduced temperature to a small volume on a rotary evaporator (yield: 30%w/w). The extract was subjected to preliminary qualitative (Harborne, 1984 and Mondal *et al.*, 2017) and quantitative (for phenolics, flavonoids and alkaloids) and phytochemical analysis table 1.

Determination of total phenolic content

The total phenolic content was estimated using the modified Folin-Ciocalteu's photometric saturated sodium carbonate (Vabkova *et al.*, 2012). The solution was then immediately diluted to the volume of 50 ml with distilled water. The absorbance was measured at 750 nm after 90 minutes of incubation at room temperature against the blank gallic acid was used as standard. The total phenolic content is here expressed as gallic acid equivalents (GAE) per 100 g of dry weight (dw) table 1.

Determination of total flavonoid content

The total flavonoid content was measured using a modified colorimetric method (Vabkova *et al.*, 2012). The appropriate amount of extract was added to a test-tube together with distilled water. Then was added 5% NaNO₂, after 5 minutes 10% AlCl₃ and after another 5 minutes 1M NaOH followed by the addition of distilled water. The absorbance was measured against the blank at 510 nm after 15 minutes. The standard curve was prepared using different concentration of catechin. The flavonoid content was expressed as gram catechin equivalents (CE) per 100 g of dry weight (dw) table 1.

Determination of total alkaloid content

The total alkaloid content was determined according to UV- Spectrophotometer method (Manjunath *et al.*, 2012). This method is based on the reaction between alkaloid and bromocresol green. The part of the plant extract was dissolved in 2N HCl and then filtered. 1 ml of this solution was transferred to separatory funnel and washed with 10 ml chloroform, and then the pH of phosphate buffer solution was adjusted to neutral with 0.1N NaOH. One ml of this solution was transferred to a separating funnel and then 5 ml of bromocresol solution along with 5 ml of phosphate buffer were added. The mixture was shaken and the complex formed was fractioned with chloroform by vigorous shaking. The fractions were collected in a 10 ml volumetric flask and diluted to volume with chloroform. The absorbance of the complex in chloroform was measured at 470 nm. All experiments were performed thrice; the results were averaged and reported in the form of mean \pm S.E.M, in table 1. The appropriate amount of filtered methanol extracts were oxidized with Folin-Ciocalteu's reagents and after 5 minutes was the reaction neutralized with saturated sodium carbonate. The solution was then immediately diluted to the volume of 50 ml with distilled water. The absorbance was measured at 750 nm after 90 minutes of incubation at room temperature against the blank. As the standard was used gallic acid. The total phenolic content is here expressed as gallic acid equivalents (GAE) per 100 g of dry weight table 1.

Acute toxicity study

The acute toxicity studies were conducted for selected plant methanolic extracts as per the OECD guidelines 423 (Anonymous, 2000), with slight modifications (Ganapaty *et al.*, 2002), using female albino rats. The selected three extracts showed neither visible sign of toxicity nor mortality. The results clearly indicated non-toxicity of the extracts at a dose of 2000 mg/kg p.o. From this, 1/20th 1/10th, and 1/5th and doses were selected for the experimental study. Hence there is no LD_{50} and all the extracts tested are considered safe and nontoxic.

In-vivo screening for hepatoprotective activity

Animals used

Wistar albino rats of either sex weighing between 200-250 g were obtained from Mahaveer Enterprises,

S .	Treatment group	Serum biochemical parameters							
No.		SGOT (IU/L)	SGPT (IU/L)	ALP (IU/L)	T.BILI.(mg/dl)				
1	Control (5% gum acacia 1 ml/kg p.o.)	77.81±0.42	63.75±0.49	134.08±0.80	0.49±0.01				
2	Hepatotoxin - $CCl_4(1 \text{ ml/kg p.o.})$	508.47±0.78***	398.87±0.62***	785.74±0.59***	4.78±0.57***				
3	Standard- Silymarin(50 mg/kg p.o.)	133.11±0.53***	102.96±0.67***	222.41±1.17***	1.44±0.05				
4	Methanolic extract of <i>D. chrysanthemum</i> (100mg/kgp.o.)	318.11±0.83***	265.94±0.46***	548.07±0.53***	2.92±0.03**				
5	Methanolic extract of <i>D. chrysanthemum</i> (200mg/kg p.o.)	221.06±0.48***	182.27±1.02***	390.33±0.88***	1.40±0.01				
6	Methanolic extract of <i>D. chrysanthemum</i> (400mg/kg p.o.)	146.06±0.39***	108.55±0.96***	246.88±0.66***	1.73±0.04				

Table 2: Effect of methanolic extract of whole plant of *D. chrysanthemum* against CCl₄ induced hepatotoxicity in albino rats.

Values are mean ± SEM, n=6, Significance: *P<0.05, **P<0.01, ***P<0.001

Hyderabad. The animals were housed under standard environmental conditions (temperature of $22 \pm 1^{\circ}$ C with an alternating 12 hrs. light- dark cycle and relative humidity of $60 \pm 5\%$), one week before the start and also during the experiment as per the rules and regulations of the Institutional Ethical Committee and by animal regulatory body of the Government (Regd: No: 516/01/ CPCSEA). They were fed with standard pellet laboratory diet supplied by M/s. Rayans biotechnologies Pvt. Ltd., Hyderabad and water *ad libitum*.

Experimental procedure

In this screening (Janbaz et al., 2002) albino rats of either sex (200-250 g) were used. The animals were fed with standard diet and water ad libitum two weeks before and during the experimental period. The Dendrobium chrysanthemum methanolic extract (DOME) was tested at 100, 200 and 400 mg/kg, p.o., dose level. The animals were divided in to 6 groups (I-VI), each group consisting of 6 animals. Group I received 5% gum acacia suspension and acts as a normal control and Group II received CCl₄ at a dose of 1 ml/kg orally (p.o.) acts as negative control. Groups III-VI were treated with selected drugs (silymarin and plant extract) for 5 days before the commencement of experiment and on day 6th of the experiment, blood samples were collected (6th day) at 0 hr in all groups and CCl₄ was administered to all groups except group I (normal control) one hour after the administration of drugs. On 7th day blood samples were collected from all groups by retro orbital puncture, serum was separated by centrifugation and used for the estimation of blood serum parameters (SGOT, SGPT, ALP and total bilirubin) according to the standard procedures. The liver sections also dissected out subjected to histopathology studies and results are shown tables 2 and Fig. 1 and 2.

Histopathological studies

All the animals were anesthetized with Sodium pentobarbital (50 mg/kg, IP) (Phifer *et al.*, 1986) and

Fig. 1: Percentage reduction of various serum biochemical parameters due to treatment with *D. chrysanthemum* methanolic extract (DOME) against CCl_4 induced hepatotoxicity in albino rats.

livers were dissected out quickly by cutting on the ventral side. The isolated liver specimen was trimmed to small pieces and preserved in neutral buffered formalin (10% formaldehyde in phosphate buffered saline) solution for 24 hrs. The liver specimen was subjected to dehydration with acetone of strength 70, 80, 100 % respectively, each for one hour. The infiltration and impregnation was done by treatment with paraffin wax twice each time for one hour. Specimens were cut into sections of $3-5 \,\mu$ m thickness using microtome and were stained with hematoxylin and eosin and later the microscopic slides of the liver were photographed at 40X magnification (Vabkova *et al.*, 2012) And Manjunath *et al.*, 2012) Fig. 2.

Statistical analysis

The data obtained in the studies were subjected to

Fig. 2: Effect of methanolic extract of *D. chrysanthemum* against CCl₄ induced hepatotoxicity in albino rats.

one way of analysis of variance (ANOVA) for determining the significant difference. The inter group significance was analysed using Dunnet's *t*-test. A *p*-value < 0.05 was considered to be significant. All the values were expressed as mean \pm SEM.

Results and Discussion

The methanolic extract of D. chrysanthemum at dose levels of 100, 200 and 400 mg/kg, p.o., were tested using silymarin (50 mg/kg, p.o.,) as a standard. As indicated from the results CCl₄ induced animals showed an increase in the activities of SGPT, SGOT, and ALP and the content of total bilirubin when compared to the normal control group. The tested doses exhibited significant hepatoprotective activity against CCl₄ induced liver intoxicated rats by reduction in increased serum levels of SGOT, SGPT, ALP and total bilirubin. A slight decrease was found after the treatment with 100 mg/kg b.w., when compared to the CCl₄ induced group. However administration of doses at 200 and 400 mg/kg b.w., produced significant decrease in enzymes levels (SGOT, SGPT, ALP) and total bilirubin table 2 and Fig. 1. No abnormal appearance or histopathological changes were observed in the liver. Treatment with silvmarin almost restored the normal architecture of liver whereas the rats treated with test methanolic extract of D. chrysanthemum at doses of 100, 200 and 400 mg/kg b.w., showed recovery from CCl₄ induced liver damage as evident from normal hepatocytes. With higher dose (400mg/kg) showed significant attenuation of inflammatory and necrotic changes and cellular architecture of liver was preserved indicating a marked protective activity (Boll et al., 2012 and Kasdallah-Grissa et al., 2007) similar to that observed in silymarin Fig. 2.

Phytochemical studies on the selected plant revealed the presence of flavonoids, alkaloids, triterpenoids, glycosides, steroids and carbohydrates. The presence of above constituents in selected plant extract alone or in combination might be responsible for the observed hepatoprotective activity. Further, this was supported by quantitative estimation of phytoconstituents. The total phenolic, flavonoid and alkaloid contents were found to be 4.51 ± 0.4 , 5.34 ± 0.93 and 48.16 ± 0.46 respectively [Table 1]. Therefore, the study shows that there is a prospective future in the use of plants as a source of natural medicine for curing various diseases.

Conclusion

All these scientific observations support the traditional use of *Dendrobium chrysanthemum* for treating liver disorders. The free radical scavenging and antioxidant properties are probably due to the presence of phytoconstituents.

References

- Anonymous (2000). OECD Guidelines for the Testing of Chemicals, Revised Draft Guidelines 423: acute oral toxicityacute toxic class method, Revised Document, Govt. of India: CPCSEA, Ministry of Social Justice and Empowerment, New Delhi.
- Anonymous (2007). WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues, WHO press publishes, Spain.
- Arditti, J. and R. Ernst (1993). Micropropagation of orchids, John Wiley, New York.
- Boll, M., L.W. Weber, E. Becker and A. Stampfl (2001). Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. *Journal of Biosciences*, 56(7-8): 649-659.
- Chung, H.H., J.T. Chen and W.C. Chang (2005). Cytokinins induce direct somatic embryogenesis of *Dendrobium* 'Chiengmai Pink' and subsequent plant regeneration. *In Vitro Cellular & Developmental Biology-Plant*, **41**: 765-769.
- Chung, H.H., J.T. Chen and W.C. Chang (2007). Plant regeneration through direct somatic embryogenesis from leaf explants of *Dendrobium*. *Biologia Plantarum*, **51(2)**: 346-350.
- Felix, S., P. Eleonora and S. Detlef (2005). Herbal hepatotoxicity. *Journal of Hepatology*, **43(5):** 901-910.
- Ganapaty, S., G.K. Dash and P.T. Subburaju (2002). Suresh. Diuretic, laxative and toxicity studies of *Cocculus hirsutus* aerial parts. *Fitoterapia*, **73(1)**: 28-31.
- Girish, C., B.C. Koner, S. Jayanthi, K.R. Rao and B. Rajesh (2009). Pradhan SC. Hepatoprotective activity of six polyherbal formulations in paracetamol induced liver toxicity in mice. *Indian Journal of Medical Research*, **129(5):** 569-578.
- Harborne, J.B. (1984). Phytochemical methods: A guide to modern techniques of plant analysis, Chapman and Hall, New York.
- Janbaz, K.H., S.A. Saeed and A.H. Gilani (2002). Protective effect of rutin on paracetamol- and CCl₄-induced hepatotoxicity in rodents. *Fitoterapia*, **73(7-8)**: 557-563.
- Jessica, J.J.A., L.K. Chan, R. Xavier, U.R. Sinniah and S. Subramaniam (2010). Preliminary study on cryopreservation of *Dendrobium bobby messina* protocorm-like bodies by vitrification. *African Journal of Biotechnology*, 9(42): 7063-7070.
- Kasdallah-Grissa, A., B. Mornagui, E. Aouani, M. Hammani, E.M. Michelle, N. Gharbi, A. Kamoun and S. El-Fazaa (2007). Resveratrol, a red wine polyphenols, attenuates ethanolinduced oxidative stress in rat liver. *Life Sciences*, 80(11):

1033-1039.

- Manjunath, A, B.G. Mahadev and U.N. Shradda (2012). Estimation of total alkaloid in Chitrakadivati by UVspectrophotometer. *Ancient Science of Life*, **31(4):** 198-201.
- Manorama, P., A.N. Rao, C.J. Goh and C.S. Loh (1984). Leaf callus development in Aranda and Dendrobium, In Fifth ASEAN Orchid Congress, Singapore.
- Mondal, S., D. Ghosh, S. Ganapaty, S.V.G. Chekuboyina and S. Manisha (2017). Hepatoprotective activity of *Macrothelypteris torresiana* (Gaudich.) aerial parts against CCl_4 -induced hepatotoxicity in rodents and analysis of polyphenolic compounds by HPTLC. *Journal* of Pharmaceutical Analysis, **7(3)**: 181-189.
- Nayak, N.R., S.P. Rath and S. Patnaik (1997). In-vitro propagation of three epiphytic orchids, Cymbidium aloifolium L. Sw., Dendrobium aphyllum (Roxb.) Fisch and Dendrobium moschatum (Buch-Ham) Sw. through thidiazuron-induced high frequency shoot proliferation. Scientia Horticulturae, 71(3-4): 243-250.

- Phifer, C.B. and M.T. Leslie (1986). Use of hypothermia for general anesthesia in preweanling rodents. *Physiology and Behavior*, **38(6)**: 887-890.
- Pillon, Y. and M.W. Chase (2007). Taxonomic exaggeration and its effects on orchid conservation. *Conservation Biology*, 21(1): 263-265.
- Raheleh, D. and J. Alireza (2017). Review of research on Dendrobium sonia-28, a hybrid from Orchidacea family and mutation as somaclonal variation. *International Journal of Biosciences*, **10(6):** 29-47.
- Shikha, S., K.L. Vijay and K.P. Kamlesh (2012). Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. *Phytopharmacol*, **2(1):** 1-15.
- Vabkova, J. and J. Neugebauerova (2012). Determination of total phenolic content, total flavonoid content and frap in culinary herbs in relation to harvest time. *Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis*, **60(1):** 167-172.